Let be a sequence of measure preserving transformations of a probability space (Ω,Σ,P) into itself and let be a sequence of elements of with . It is shown that the distribution oftends to the normal distribution N(0,1) as n → ∞.
1985 Mathematics Subject Classification: 58F11, 60F05, 28D99.
CONTENTS1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52. A central limit theorem for martingale differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83. Stationary family of processes and central limit theorems for its elements. . . . . . . . . . . . . . .164. Central limit theorems for processes determined by endomorphisms. . . . . . . . . . . . . . . . . . 235. The central limit theorems for automorphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .466. Final remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
@book{bwmeta1.element.zamlynska-4d448c64-afff-4f5c-a6d6-b126836300fa, author = {Marian Jab\l o\'nski}, title = {A central limit theorem for processes generated by a family of transformations}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1991}, zbl = {0744.60023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-4d448c64-afff-4f5c-a6d6-b126836300fa} }
Marian Jabłoński. A central limit theorem for processes generated by a family of transformations. GDML_Books (1991), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-4d448c64-afff-4f5c-a6d6-b126836300fa/