CONTENTSIntroduction...................................................................................5§1. Preliminaries...........................................................................7§2. Definitions and a theorem of Diestel, Faires and Huff.............9§3. Examples...............................................................................13§4. Some special classes of Boolean algebras ..........................19§5. The Grothendieck property...................................................22§6. The Orlicz-Pettis property ....................................................27References.................................................................................32
ERRATA Page, line: 6¹ For: barelled Read: barrelled Page, line: 6¹² For: coordinate Read: coordinate) Page, line: 6₇ For: barreled Read: barrelled Page, line: 7₁₁ For: Bodean algebra Read: Boolean algebra Page, line: 9¹⁵ For: Randon-measure Read: Radon-measure Page, line: 17₆ For: concides Read: coincides Page, line: 25₁ For: j* Read: j⁎ Page, line: 29³ˑ⁵ For: Read:
@book{bwmeta1.element.zamlynska-46047466-7a42-41f0-b7cf-c4e008ff3e05, author = {Walter Schachermayer}, title = {On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1982}, zbl = {0522.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-46047466-7a42-41f0-b7cf-c4e008ff3e05} }
Walter Schachermayer. On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras. GDML_Books (1982), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-46047466-7a42-41f0-b7cf-c4e008ff3e05/