Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas
Hans-Otto Walther
GDML_Books, (1990), p.

CONTENTSIntroduction...........................................................................................................................................5  I.........................................................................................................................................................151. Preliminaries...................................................................................................................................152. Solutions of a family of differential delay equations with periodic nonlinearity.................................163. Linearization of the semiflow............................................................................................................214. The saddle point property...............................................................................................................24  II........................................................................................................................................................305. The transformed semiflow...............................................................................................................306. A shift along the transformed semiflow............................................................................................367. The level sets Hak................................................................................................................448. Inclinations of tangent vectors.........................................................................................................469. Estimating D₁Σ(ψ,a) at BC-points ψ in level sets Hak............................................................4810. End of the proof of Theorem 6.1...................................................................................................51  III.......................................................................................................................................................5311. Šilnikov continuation and return map............................................................................................5312. Smoothness properties of f...........................................................................................................5613. Bifurcation.....................................................................................................................................5814. Proof of Theorem 13.2 (vi.2) and (vi.3), for a parameter interval A19 instead of A...............6315. Proof of Theorem 13.2 (vi.1).........................................................................................................70References.........................................................................................................................................74

EUDML-ID : urn:eudml:doc:268509
@book{bwmeta1.element.zamlynska-4390bd52-8c33-45d1-a2e3-692e6b316f53,
     author = {Hans-Otto Walther},
     title = {Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1990},
     zbl = {0726.34058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-4390bd52-8c33-45d1-a2e3-692e6b316f53}
}
Hans-Otto Walther. Bifurcation from a saddle connection in functional differential equations: An approach with inclination lemmas. GDML_Books (1990),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-4390bd52-8c33-45d1-a2e3-692e6b316f53/