CONTENTSIntroduction..............................................................................................................................................5I. Naive set theory.....................................................................................................................................61. The formal system................................................................................................................................62. Inversion and reduction properties of the rules of inference..............................................................123. Rules of contraction...........................................................................................................................174. Normalizability.....................................................................................................................................225. Counter-examples to normalizability in set theory...............................................................................246. C-normalizability.................................................................................................................................287. Concepts of normalizability and C-normalizability for naive set theory with intuitionistic logic.............33II. Well-founded fragments of naive set theory........................................................................................331. Basic definitions, properties of C-normal deductions..........................................................................332. Axioms for set theory..........................................................................................................................373. The language SET..............................................................................................................................504. Semantical motivation for the rules of contraction..............................................................................54III. C-normalizability of deductions in well-founded fragments of naive set theory...................................621. Well-foundedness predicates and well-foundedness objects.............................................................632. ..................................................................................................................................663. The substitution property....................................................................................................................844. Every deduction in N satisfies some negation closed W-predicate.....................................................875. C-normalizability for well-founded fragments of naive set theory with intuitionistic logic.....................926. Notes..................................................................................................................................................94References.............................................................................................................................................95
Errata Page: 6₂ For: r,s Read: r,t Page: 75² For: Read:
@book{bwmeta1.element.zamlynska-2e4a4d2f-6a08-47b6-8e9b-1f63f3aac438, author = {Lars Halln\"as}, title = {On normalization of proofs in set theory}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1988}, zbl = {0667.03041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-2e4a4d2f-6a08-47b6-8e9b-1f63f3aac438} }
Lars Hallnäs. On normalization of proofs in set theory. GDML_Books (1988), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-2e4a4d2f-6a08-47b6-8e9b-1f63f3aac438/