Structure properties of D-R spaces
Hartmut von Trotha
GDML_Books, (1981), p.

CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.................................................................................................. 6 2. D-R vector spaces.............................................................................................................. 7 3. Basic types of D-R spaces............................................................................................... 7  3.1. Examples............................................................................................................. 7 4. Subspaces.......................................................................................................................... 8 5. Homomorphisms............................................................................................................... 8  5.1 Quotient spaces and homomorphisms......................................................... 10§2. The general Taylor theorem............................................................................................... 11 1. The elementary Taylor theorem....................................................................................... 11  1.1. Bands of subspaces....................................................................................... 12 2. The general Taylor theorem............................................................................................. 14§ 3. Structure elements of D-R spaces................................................................................... 17 1. The simple Taylor formula................................................................................................ 17 2. Distinguished subspaces and subspace chains....................................................... 18  2.1. Canonical subspaces of a D-R space........................................................ 18  2.2. The space Di............................................................................................. 19  2.3. The space S...................................................................................................... 19  2.4. The space Q..................................................................................................... 20 3. Extension of the domain of D........................................................................................... 21 4. The structure chain............................................................................................................ 22 5. Components and formal component series................................................................ 23 6. Examples............................................................................................................................. 25§ 4. The D-R homomorphism theorem.................................................................................. 27 1. The D-R reference space X0..................................................................................... 27  1.1. X(Z) as a D0-R0 space with DD0 = X(Z)................................... 28  1.2. The d0-convergence................................................................................ 28  1.3. The Volterra property of X0 and eigenspaces of D0...................... 31 2. DD0 X0(Z).......................................................................... 32 3. The D-R homomorphism theorem................................................................................. 33  3.1. Eigenvectors of D and R................................................................................. 35 4. The D-R homomorphism theorem for DD0 X.................. 35 5. d0-topology................................................................................................................... 38

EUDML-ID : urn:eudml:doc:268475
@book{bwmeta1.element.zamlynska-29b49d72-9407-4a28-a355-48cd11517227,
     author = {Hartmut von Trotha},
     title = {Structure properties of D-R spaces},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1981},
     zbl = {0469.47003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-29b49d72-9407-4a28-a355-48cd11517227}
}
Hartmut von Trotha. Structure properties of D-R spaces. GDML_Books (1981),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-29b49d72-9407-4a28-a355-48cd11517227/