CONTENTSIntroduction................................................................................................................................... 5 Notations.......................................................................................................................... 5§ 1. Preliminaries........................................................................................................................ 6 1. Right invertible operators.................................................................................................. 6 2. D-R vector spaces.............................................................................................................. 7 3. Basic types of D-R spaces............................................................................................... 7 3.1. Examples............................................................................................................. 7 4. Subspaces.......................................................................................................................... 8 5. Homomorphisms............................................................................................................... 8 5.1 Quotient spaces and homomorphisms......................................................... 10§2. The general Taylor theorem............................................................................................... 11 1. The elementary Taylor theorem....................................................................................... 11 1.1. Bands of subspaces....................................................................................... 12 2. The general Taylor theorem............................................................................................. 14§ 3. Structure elements of D-R spaces................................................................................... 17 1. The simple Taylor formula................................................................................................ 17 2. Distinguished subspaces and subspace chains....................................................... 18 2.1. Canonical subspaces of a D-R space........................................................ 18 2.2. The space ............................................................................................. 19 2.3. The space S...................................................................................................... 19 2.4. The space Q..................................................................................................... 20 3. Extension of the domain of D........................................................................................... 21 4. The structure chain............................................................................................................ 22 5. Components and formal component series................................................................ 23 6. Examples............................................................................................................................. 25§ 4. The D-R homomorphism theorem.................................................................................. 27 1. The D-R reference space ..................................................................................... 27 1.1. X(Z) as a space with = X(Z)................................... 28 1.2. The -convergence................................................................................ 28 1.3. The Volterra property of and eigenspaces of ...................... 31 2. .......................................................................... 32 3. The D-R homomorphism theorem................................................................................. 33 3.1. Eigenvectors of D and R................................................................................. 35 4. The D-R homomorphism theorem for X.................. 35 5. -topology................................................................................................................... 38
@book{bwmeta1.element.zamlynska-29b49d72-9407-4a28-a355-48cd11517227, author = {Hartmut von Trotha}, title = {Structure properties of D-R spaces}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1981}, zbl = {0469.47003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-29b49d72-9407-4a28-a355-48cd11517227} }
Hartmut von Trotha. Structure properties of D-R spaces. GDML_Books (1981), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-29b49d72-9407-4a28-a355-48cd11517227/