CONTENTSIntroduction................................ 51. Preliminaries.......................... 52. When is the symmetric product a manifold?.............. 123. When is the cyclic product a manifold?............................................................................................. 174. When is the permutation product a manifold? The characterization problem........................... 225. Permutation products of the punctured cell and two-dimensional half-space.......................... 286. Permutation products of the annulus................................................................................................ 347. The second permutation product of the torus.................................................................................. 418. Summary of known characterizations................................................................................................ 46References and bibliography.................................................................................................................. 47
@book{bwmeta1.element.zamlynska-21d458e5-3a52-4314-930d-962044513eb6, author = {Clifford H. Wagner}, title = {Symmetric, cyclic, and permutation products of manifolds}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1980}, zbl = {0464.57006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-21d458e5-3a52-4314-930d-962044513eb6} }
Clifford H. Wagner. Symmetric, cyclic, and permutation products of manifolds. GDML_Books (1980), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-21d458e5-3a52-4314-930d-962044513eb6/