On Fueter-Hurwitz regular mappings
Królikowski Wiesław
GDML_Books, (1996), p.

CONTENTSIntroduction........................................................................................................6I. Quaternionic regular and biregular functions in the sense of Fueter..............9   1. Introduction................................................................................................9   2. Fueter derivative and regular functions.....................................................10   3. Quaternionic partial derivatives.................................................................12   4. Functions with holomorphic slices.............................................................14   5. Non-regularity of simple quaternionic power series....................................17   6. Biregular mappings...................................................................................20   7. Leibniz rule for the Fueter operator...........................................................22   8. Regular functions on manifolds.................................................................24II. &Fueter regular functions and harmonicity.....................................................25   1. Introduction...............................................................................................25   2. Quaternionic manifolds-foundations..........................................................26   3. Energies of mappings...............................................................................30   4. Lichnerowicz-type homotopy invariant-quaternionic case.........................33   5. Lichnerowicz-type homotopy invariant for G-structures............................39      a) General situation...................................................................................39      b) Special cases: holonomy groups G₂ and Spin(7)....................................41      c) Generalization of the Lichnerowicz invariant in the complex case............43   6. Stress-energy tensor and harmonic maps.................................................45      Application to the 4-dimensional torus........................................................58III. &Fueter-Hurwitz regular maps and Hurwitz pairs..i.......................................60   1. Introduction................................................................................................60   2. Hurwitz pairs-basic information...................................................................62   3. Fueter-Hurwitz equation..............................................................................64   4. Special polynomial solutions of the Fueter-Hurwitz equation........................65   5. Fourier representation of Fueter-Hurwitz regular mappings.........................68   6. Integral representation of Fueter-Hurwitz regular mappings.........................69   7. Anisotropic complex structure on the pseudo-Euclidean Hurwitz pairs..........75   8. Pairs of Clifford algebras of Hurwitz type.......................................................85   Acknowledgements...........................................................................................88   References.......................................................................................................88

1991 Mathematics Subject Classification: 15A63, 15A66, 30G35, 32A30, 32K15, 53C10-53C40.

EUDML-ID : urn:eudml:doc:270072
@book{bwmeta1.element.zamlynska-1d098364-63d2-42ee-ab10-3530243599f8,
     author = {Kr\'olikowski Wies\l aw},
     title = {On Fueter-Hurwitz regular mappings},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1996},
     zbl = {0864.30038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-1d098364-63d2-42ee-ab10-3530243599f8}
}
Królikowski Wiesław. On Fueter-Hurwitz regular mappings. GDML_Books (1996),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-1d098364-63d2-42ee-ab10-3530243599f8/