Spaces of Lipschitz type, embeddings and entropy numbers
Edmunds D. E. ; Haroske D.
GDML_Books, (1999), p.

AbstractWe establish the sharpness of the embedding of certain Besov and Triebel-Lizorkin spaces in spaces of Lipschitz type. In particular, this proves the sharpness of the Brézis-Wainger result concerning the “almost” Lipschitz continuity of elements of the Sobolev space Hp1+n/p(), where 1 < p < ∞. Upper and lower estimates are obtained for the entropy numbers of related embeddings of Besov spaces on bounded domains.

CONTENTSIntroduction...........................................................51. Preliminaries.....................................................6 Spaces on ℝⁿ......................................................6 Atomic decompositions........................................8 Spaces on domains...........................................10 Embeddings.......................................................11 Entropy numbers................................................112. Sharpness.......................................................133. Lipschitz embedding, entropy numbers...........214. Comparison with related results......................30 Embeddings.......................................................30 Entropy numbers...............................................36 Estimate from above..........................................37References.........................................................42

1991 Mathematics Subject Classification: 26A16, 46E35, 41A46, 46E15.

EUDML-ID : urn:eudml:doc:271244
@book{bwmeta1.element.zamlynska-17126c89-a594-4107-82bf-95c4741d8313,
     author = {Edmunds D. E. and Haroske D.},
     title = {Spaces of Lipschitz type, embeddings and entropy numbers},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1999},
     zbl = {0932.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-17126c89-a594-4107-82bf-95c4741d8313}
}
Edmunds D. E.; Haroske D. Spaces of Lipschitz type, embeddings and entropy numbers. GDML_Books (1999),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-17126c89-a594-4107-82bf-95c4741d8313/