ContentsIntroduction .............................................................................................................................................................................. 51. Regular representations of algebras with approximate unit. A duality theorem..................................................... 92. Induced representations of algebras. The main duality............................................................................................. 203. Specialization; differentiable induced representations of Yamabe groups............................................................ 244. Unitary induced representations of groups................................................................................................................... 315. Induced representations of Banach algebras............................................................................................................... 396. The Frobenius reciprocity in the theory of square-integrable representations of Hilbert algebras.................... 45References............................................................................................................................................................................... 59
@book{bwmeta1.element.zamlynska-137659ba-056b-4607-9ae5-cb87efc707da,
author = {Antoni Wawrzy\'nczyk},
title = {Reciprocity theorems in the theory of representations of groups and algebras},
series = {GDML\_Books},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
address = {Warszawa},
year = {1975},
zbl = {0329.46053},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-137659ba-056b-4607-9ae5-cb87efc707da}
}
Antoni Wawrzyńczyk. Reciprocity theorems in the theory of representations of groups and algebras. GDML_Books (1975), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-137659ba-056b-4607-9ae5-cb87efc707da/