CONTENTS0. Introduction................................................................................................................................................................51. Preliminary remarks...................................................................................................................................................62. Hyperfunctions and their generalizations.................................................................................................................103. Flat functions; definitions and properties.................................................................................................................144. Taylor formula for quasi functions.............................................................................................................185. Homogeneous distributions and their properties......................................................................................................206. Mellin transformable distributions.............................................................................................................................227. Differential equations in the space of Mellin transformable distributions. Operational calculus for ℳ......................268. Taylor formula for distributions.................................................................................................................................299. Taylor transformation for functions and distributions................................................................................................3210. Spectral support of a function and of a distribution................................................................................................3311. Determination of singularities of solutions of ordinary linear differential operators with smooth coefficients..........3611. 1. Asymptotic expansion of the push-forward operation for F admitting an F-invariant operator...........4012. Value of a function (distribution) at a point.............................................................................................................4113. Taylor formula for the product of functions.............................................................................................................4414. Multiplication of distributions. Taylor formula for the product of distributions..........................................................4714.1. Spectral topology................................................................................................................................................5014.2. Heuristic remarks concerning multiplication of distributions.................................................................................5114.3. Taylor formula for the function 1/f........................................................................................................................5115. Taylor formula for composite functions...................................................................................................................52References ..................................................................................................................................................................56
@book{bwmeta1.element.zamlynska-12bb5d6a-bf89-45ae-82f6-d4843817119b, author = {Bogdan Ziemian}, title = {Taylor formula for distributions}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1988}, zbl = {0685.46025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-12bb5d6a-bf89-45ae-82f6-d4843817119b} }
Bogdan Ziemian. Taylor formula for distributions. GDML_Books (1988), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-12bb5d6a-bf89-45ae-82f6-d4843817119b/