CONTENTS§1. Introduction................................................................................................................................... 5§2. Some classes of objects and morphisms in pro-categories..................................................... 5§3. Shape category.................................................................................................................................... 14§4. Deformation dimension..................................................................................................................... 16§5. Some properties of n-equivalences of pro- ...................................................................... 18§6. The Whitehead theorems in shape and pro-homotopy.............................................................. 26§7. Criteria for stability in shape and pro-homotopy........................................................................... 29§8. The Smale theorem in shape theory............................................................................................... 37References.................................................................................................................................................. 49
@book{bwmeta1.element.zamlynska-1101479d-6651-42f5-82a0-1b46844a50b8,
author = {Jerzy Dydak},
title = {The Whitehead and the Smale theorems in shape theory},
series = {GDML\_Books},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
address = {Warszawa},
year = {1978},
zbl = {0405.55010},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-1101479d-6651-42f5-82a0-1b46844a50b8}
}
Jerzy Dydak. The Whitehead and the Smale theorems in shape theory. GDML_Books (1978), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-1101479d-6651-42f5-82a0-1b46844a50b8/