C*-semigroup bundles and C*-algebras whose irreducible representations are all finite dimensional
Thomas Müller
GDML_Books, (1989), p.

We investigate the structure of C*-algebras with a finite bound on the dimensions of their irreducible representations, sometimes called “subhomogeneous”.In the first chapter we develop the theory of C*-semigroup bundles. These are C*-bundles over semigroups together with a “structure map” which links the semigroup structure of the base space lo the bundle. Under suitable conditions we prove the existence of “enough” bounded sections, which arc “compatible” with the C*-semigroup bundle structure. Then we establish a complete duality between a certain class of C*-semigroup bundles and subhomogeneous C*-algebras, namely the algebra of compatible sections of such a C*-semigroup bundle is subhomogeneous and conversely, every subhomogeneous C*-algebra is isomorphic to the algebra of compatible sections of such a C*-semigroup bundle. In this way we are able to even represent C*-algebras with non-Hausdorff spectrum as sections in bundles.The second chapter is devoted to developing methods for the computation of the functor ΠH¹R, which classifies certain C*-bundles with varying finite dimensional fibres. ΠH¹R is the C*-bundle analog of Čech-cohomology for bundles with one fibre type. The difficulty here is, that homotopy classes of cocycles of bundle imbeddings have to be computed, while only homotopies that satisfy a corresponding cocycle condition can be considered. We define a functor MH¹R which describes the multiplicities of the imbeddings of the fibres into the bundle and assignment of multiplicity matrices to cocycles yields a natural transformation: ΠH¹RMH¹R.Chapter three finally gives some applications. We calculate ΠH¹R for C’-bundles over a two disk Tor an assignment of different finite dimensional fibres. The result is stated in terms of MH¹R and quotients of homotopy groups of bundle imbeddings. It provides a new way to describe the group C*-algebra of an interesting group called p4gm, which has been computed by I. Raeburn, and furthermore, our description yields complete invariants — in fact these are given by MH¹R.A last example involving bundles over a three ball with 3 different fibres shows the fact that MH¹R does not always provide complete invariants and at the same time illustrates the limits of our methods.

CONTENTS0. Introduction........................................................................................................................................................................5I. C*-semigroup bundles and C*-algebras whose irreducible representations are all finite dimensional.................................71. C*-semigroup bundles and their morphisms......................................................................................................................72. The universal C*-semigroup bundle of a C*-algebra........................................................................................................103. Abelian and associative C*-semigroup bundles and the extension of compatible sections..............................................134. Existence and “uniqueness” of representation semigroups and C*-semigroup bundles..................................................235. Duality between certain C*-semigroup bundles and certain C*-algebras.........................................................................296. The core of a representation semigroup..........................................................................................................................35II. The calculation of ΠH¹R for certain C*-bundles..........................................................................................................391. The functor ΠH¹R.......................................................................................................................................................392. C*-bundle embeddings, multiplicity bundles and MH¹R..............................................................................................443. Finite order C*-bundles....................................................................................................................................................524. Third order C*-bundles with finite dimensional fibres over cones over pairs of compact Riemannian manifolds..............585. A remark on the continuity of the map f:XSA of I.5.3.3.........................................................................................66III. Applications and open problems......................................................................................................................................671. Applications and final remarks.........................................................................................................................................672. Applications.....................................................................................................................................................................763. Open problems and final remarks....................................................................................................................................81Appendix. A simple proof of Dupre’s classification Theorem II.1.1 for a restricted class of bundles.....................................82References..........................................................................................................................................................................87

EUDML-ID : urn:eudml:doc:268637
@book{bwmeta1.element.zamlynska-0e6ff4c5-030d-4253-af79-dd1c3664236e,
     author = {Thomas M\"uller},
     title = {C*-semigroup bundles and C*-algebras whose irreducible representations are all finite dimensional},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1989},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-0e6ff4c5-030d-4253-af79-dd1c3664236e}
}
Thomas Müller. C*-semigroup bundles and C*-algebras whose irreducible representations are all finite dimensional. GDML_Books (1989),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-0e6ff4c5-030d-4253-af79-dd1c3664236e/