CONTENTSPreface.................................................................................................5Chapter 0. Preliminaries and notation..................................................6PART I. Free topological vector spaces - Introduction..........................9Chapter 1. Universal arrows...............................................................10Chapter 2. Free locally convex topological vector spaces..................12Chapter 3. Free normed spaces........................................................23Chapter 4. Uniform pairs....................................................................32PART II. Properties of the free functors - Introduction........................40Chapter 5. Monads, comonads and extension...................................40Chapter 6. Invariance and tensors.....................................................54PART III. Free complete topological vector spaces - Introduction.......63Chapter 7. Measure spaces and completion......................................64Chapter 8. Properties of the completion.............................................77Chapter 9. Variations on a theme.......................................................86Appendix............................................................................................90References........................................................................................91List of notation...................................................................................94
@book{bwmeta1.element.zamlynska-0bb07cd8-2d9d-4e2a-a1db-7063e37edbcf, author = {Joe Flood}, title = {Free topological vector spaces}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1984}, zbl = {0545.46052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-0bb07cd8-2d9d-4e2a-a1db-7063e37edbcf} }
Joe Flood. Free topological vector spaces. GDML_Books (1984), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-0bb07cd8-2d9d-4e2a-a1db-7063e37edbcf/