The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices
Karl Heinrich Hofmann ; Albert Stralka
GDML_Books, (1976), p.

CONTENTSIntroduction....................................................................................................................................... 5 List of categories........................................................................................................................ 81. GALOIS CONNECTIONS................................................................................................................... 10 a. The basic theory of Galois connections............................................................................. 10 b. Applications of Galois connections to compact semilattices........................................ 13 c. Supplementary results on Lawson semilattices.............................................................. 162. COMPACT ZERO-DIMENSIONAL SEMILATTICES WITH COMPLETE DUAL............................. 19 a. Dual completeness............................................................................................................... 19 b. The compact closure operator............................................................................................. 21 c. Algebraic and order theoretic characterization of Lawson semilattices....................... 24 d. The functoriality of j, c, m......................................................................................................... 283. THE (RIGHT) REFLECTOR P : CL → D a. The ideal lattice......................................................................................................................... 33 b. The morphism sL:LPL.............................................................................................. 35 c. The functor P : CL → D............................................................................................................. 36 d. PL as a projective object......................................................................................................... 374. ON THE FINE STRUCTURE OF PL................................................................................................... 42 a. The construction of A(L).......................................................................................................... 42 b. On the geometric structure of PL........................................................................................... 475. EXAMPLES, APPLICATIONS................................................................................................................ 50Bibliography........................................................................................................................................ 54

EUDML-ID : urn:eudml:doc:268477
@book{bwmeta1.element.zamlynska-0a64c2e4-4598-4b8a-9017-1624fd87ce6b,
     author = {Karl Heinrich Hofmann and Albert Stralka},
     title = {The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices},
     series = {GDML\_Books},
     publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
     address = {Warszawa},
     year = {1976},
     zbl = {0359.06016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-0a64c2e4-4598-4b8a-9017-1624fd87ce6b}
}
Karl Heinrich Hofmann; Albert Stralka. The algebraic theory of compact Lawson semilattices Applications of Galois connections to compact semilattices. GDML_Books (1976),  http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-0a64c2e4-4598-4b8a-9017-1624fd87ce6b/