CONTENTSIntroduction....................................................................................... 50. Set theory M.................................................................................. 61. Reflection principles in M.......................................................... 122. The trees....................................................................................... 183. Ordinal trees. Constructibility in M........................................... 254. Minimal model for M................................................................... 305. Forcing in M, independence results for M.............................. 346. Hierarchy of formulas in M......................................................... 37References....................................................................................... 41
@book{bwmeta1.element.zamlynska-09292020-e310-420b-a5a6-35e0e374a3e1, author = {W. Marek}, title = {On the metamathematics of impredicative set theory}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1973}, zbl = {0273.02046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-09292020-e310-420b-a5a6-35e0e374a3e1} }
W. Marek. On the metamathematics of impredicative set theory. GDML_Books (1973), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-09292020-e310-420b-a5a6-35e0e374a3e1/