CONTENTSIntroduction............................................................................................................................................................................... 5Part I. A generalization of Post algebras............................................................................................................................. 7 1. Definition and characterization of generalized Post algebras............................................. 7 2. Post subalgebras and Post homomorphisms...................................................................... 15 3. Filters in the Post and semi-Post algebras. Quotient algebras......................................... 26 4. Post algebras of type ν................................................................................................................ 35 5. m-Representability of generalized Post algebras................................................................. 40Part II. Infinitary propositional ν-valued languages........................................................................................................... 55 1. A fundamental formal system ............................................................................ 56 2. Completeness of some formal systems based on languages ....................... 64References............................................................................................................................................................................... 71
@book{bwmeta1.element.zamlynska-06f26cdb-d41e-47a6-aa8b-d4680175f2df, author = {Cat-Ho Nguyen}, title = {Generalized Post algebras and their application to some infinitary many-valued logics}, series = {GDML\_Books}, publisher = {Instytut Matematyczny Polskiej Akademi Nauk}, address = {Warszawa}, year = {1973}, zbl = {0281.02057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-06f26cdb-d41e-47a6-aa8b-d4680175f2df} }
Cat-Ho Nguyen. Generalized Post algebras and their application to some infinitary many-valued logics. GDML_Books (1973), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-06f26cdb-d41e-47a6-aa8b-d4680175f2df/