CONTENTS Foreword..............................................................................................................................5 Introduction..........................................................................................................................6 1. Preliminaries....................................................................................................................7 1.1. Terminology and notation.............................................................................................7 1.2. Selected topics on complex topological vector spaces and their duals........................7 2. A review of basic facts in the theory of distributions.......................................................10 2.1. The spaces and ..............................................................................10 2.2. The spaces D(Ω) and D’(Ω).......................................................................................11 2.3. The spaces D(A) and D’(A)........................................................................................12 2.4. The spaces and .......................................................................14 3. Selected topics in the theory of holomorphic functions of one variable..........................15 3.1. Basic notions and theorems.......................................................................................15 3.2. The spaces A(K) and A’(K)........................................................................................16 3.3. Boundary values of holomorphic functions of one variable........................................19 4. Hyperfunctions in one variable.......................................................................................23 4.1. Definitions and basic properties of hyperfunctions....................................................23 4.2. Imbedding of analytic functions in hyperfunctions: A(Ω) ↪ B(Ω)................................26 4.3. Elementary operations on hyperfunctions..................................................................27 4.4. The Köthe theorem....................................................................................................28 4.5. Imbedding , K compact in ℝ................................................................31 4.6. The distributional version of the Köthe theorem........................................................34 4.7. Imbedding D’(Ω)↪ B(Ω), Ω open in ℝ........................................................................35 4.8. Hyperfunctional boundary values of holomorphic functions.......................................39 4.9. Hyperfunctions supported by a single point...............................................................39 4.10. Substitution in a hyperfunction and in an analytic functional (distribution)...............40 5. Laplace hyperfunctions and Laplace analytic functionals in one variable......................42 6. Mellin hyperfunctions and Mellin distributions in one variable........................................50 6.1. Mellin hyperfunctions and Mellin analytic functionals.................................................50 6.2. Mellin distributions.....................................................................................................60 7. Laplace distributions L’(ω)(ℝ͞͞₊)......................................................................................64 7.1. Definitions and basic properties of Laplace distributions...........................................64 7.2. Imbedding of Laplace distributions in Laplace hyperfunctions...................................67 7.3. Imbedding of Mellin distributions in Mellin hyperfunctions..........................................79 References........................................................................................................................81
1991 Mathematics Subject Classification: 46F12, 46F15, 46F20.
@book{bwmeta1.element.zamlynska-0012a239-5764-4678-9bfb-5ab892a8ac3b, author = {Zofia Szmydt and Bogdan Ziemian}, title = {Topological imbedding of Laplace distributions in Laplace hyperfunctions}, series = {GDML\_Books}, year = {1998}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.zamlynska-0012a239-5764-4678-9bfb-5ab892a8ac3b} }
Zofia Szmydt; Bogdan Ziemian. Topological imbedding of Laplace distributions in Laplace hyperfunctions. GDML_Books (1998), http://gdmltest.u-ga.fr/item/bwmeta1.element.zamlynska-0012a239-5764-4678-9bfb-5ab892a8ac3b/