Let be a 3-uniform linear hypertree. We consider a blow-up hypergraph . We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph of the hypertree , with hyperedge densities satisfying some conditions, such that the hypertree does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree in a blow-up hypergraph .
@article{bwmeta1.element.ojs-doi-10_17951_a_2018_72_2_9, author = {Halina Bielak and Kamil Powro\'znik}, title = {The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {72}, year = {2018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2018_72_2_9} }
Halina Bielak; Kamil Powroźnik. The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 72 (2018) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2018_72_2_9/
Baber, R., Johnson, J. R., Talbot, J., The minimal density of triangles in tripartite graphs, LMS J. Comput. Math. 13 (2010), 388-413,
http://dx.doi.org/10.1112/S1461157009000436.
Berge, C., Graphs and Hypergraphs, Elsevier, New York, 1973.
Bielak, H., Powroznik, K., An efficient algorithm for the density Tur´an problem of some unicyclic graphs, in: Proceedings of the 2014 FedCSIS, Annals of Computer Science and Information Systems 2 (2014), 479-486,
http://dx.doi.org/10.15439/978-83-60810-58-3.
Bollobas, B., Extremal Graph Theory, Academic Press, London, 1978.
Bondy, A., Shen, J., Thomasse, S., Thomassen, C., Density conditions for triangles in multipartite graphs, Combinatorica 26 (2) (2006), 121-131,
http://dx.doi.org/10.1007/s00493-006-0009-y.
Brown, W. G., Erdos, P., Simonovits, M., Extremal problems for directed graphs, J. Combin. Theory B 15 (1) (1973), 77-93,
http://dx.doi.org/10.1016/0095-8956(73)90034-8.
Csikvari, P., Nagy, Z. L., The density Tur´an problem, Combin. Probab. Comput. 21 (2012), 531-553,
http://dx.doi.org/10.1017/S0963548312000016.
Furedi, Z., Turan type problems, in: (A. D. Keedwell, ed.) Survey in Combinatorics, 1991, Cambridge Univ. Press, Cambridge, 1991, 253-300,
http://dx.doi.org/10.1017/cbo9780511666216.010.
Godsil, C. D., Royle, G., Algebraic Graph Theory, Springer-Verlag, New York, 2001,
http://dx.doi.org/10.1007/978-1-4613-0163-9.
Jin, G., Complete subgraphs of r-partite graphs, Combin. Probab. Comput. 1 (1992), 241-250,
http://dx.doi.org/10.1017/s0963548300000274.
Nagy, Z. L., A multipartite version of the Turan problem – density conditions and eigenvalues, Electron. J. Combin. 18 (1) (2011), Paper 46, 15 pp.
Turan, P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452.
Yuster, R., Independent transversal in r-partite graphs, Discrete Math. 176 (1997), 255-261,
http://dx.doi.org/10.1016/s0012-365x(96)00300-7.