On the Courant bracket on couples of vector fields and p-forms
Miroslav Doupovec ; Jan Kurek ; Włodzimierz Mikulski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 72 (2018), / Harvested from The Polish Digital Mathematics Library

If mp+12 (or m=p3), all  natural bilinear  operators A transforming pairs of couples of vector fields and p-forms on m-manifolds M into couples of vector fields and p-forms on M are described. It is observed that  any natural skew-symmetric bilinear operator A as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.

Publié le : 2018-01-01
EUDML-ID : urn:eudml:doc:290761
@article{bwmeta1.element.ojs-doi-10_17951_a_2018_72_2_29,
     author = {Miroslav Doupovec and Jan Kurek and W\l odzimierz Mikulski},
     title = {On the Courant bracket on couples of vector fields and $p$-forms},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {72},
     year = {2018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2018_72_2_29}
}
Miroslav Doupovec; Jan Kurek; Włodzimierz Mikulski. On the Courant bracket on couples of vector fields and $p$-forms. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 72 (2018) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2018_72_2_29/

Coimbra, A., Minasian, R., Triendl, H.,Waldram, D., Generalized geometry for string corrections, J. High Energy Phys. 2014 (11) (2014), 160.

Courant, T. J., Dirac manifolds, Trans. Amer. Math. Soc. 319 (2) (1990), 631-661.

Doupovec, M., Kurek, J., Lifts of tensor fields to the cotangent bundle, in: Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 141-150.

Doupovec, M., Kurek, J., Mikulski, W. M., The natural brackets on couples of vector fields and 1-forms, Turkish J. Math. 42 (4) (2018), 1853-1862.

Dębecki, J., Linear liftings of skew symmetric tensor fields of type (1,2) to Weil bundles, Czechoslovak Math. J. 60(135) (4) (2010), 933-943.

Gualtieri, M., Generalized complex geometry, Ann. of Math. (2) 174 (1) (2011), 75-123.

Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math. 54 (3) (2003), 281-308.

Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Kurek, J., Mikulski, W. M., The natural linear operators T*TT(r), Colloq. Math. 95 (1) (2003), 37-47.

Mikulski, W. M., Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. (Brno) 31 (2) (1995), 97-111.