We give an example of a Banach lattice with a non-convex modulus of monotonicity, which disproves a claim made in the literature. Results on preservation of the non-strict Opial property and Opial property under passing to general direct sums of Banach spaces are established.
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_69, author = {Joanna Markowicz and Stanis\l aw Prus}, title = {Properties of modulus of monotonicity and Opial property in direct sums}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {71}, year = {2017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_69} }
Joanna Markowicz; Stanisław Prus. Properties of modulus of monotonicity and Opial property in direct sums. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_69/
Day, M. M., Normed Linear Spaces, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962.
Hardtke, J.-D., WORTH property, Garcıa-Falset coefficient and Opial property of infinite sums, Comment. Math. 55 (2015), 23-44.
Kirk, W. A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001.
Kutzarova, D., Landes, T., Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J. 41, No. 4 (1992), 915-926.
Kurc, W., A dual property to uniform monotonicity in Banach lattices, Collect. Math. 44 (1993), 155-165.
Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces II, Springer-Verlag, New York, 1979.
Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin, 1991.
Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.