Eccentric distance sum index for some classes of connected graphs
Halina Bielak ; Katarzyna Broniszewska
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017), / Harvested from The Polish Digital Mathematics Library

In this paper we show some properties of the eccentric distance sum index which is defined as follows ξd(G)=vV(G)D(v)ε(v). This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:289850
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_25,
     author = {Halina Bielak and Katarzyna Broniszewska},
     title = {Eccentric distance sum index for some classes of connected graphs},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {71},
     year = {2017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_25}
}
Halina Bielak; Katarzyna Broniszewska. Eccentric distance sum index for some classes of connected graphs. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_25/

Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London, and Elsevier, New York, 1976.

Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401.

Hua, H., Zhang, S., Xu, K., Further results on the eccentric distance sum, Discrete App. Math. 160 (2012), 170-180.

Hua, H., Xu, K., Wen, S., A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011), 364-366.

Ilic, A., Yu, G., Feng, L., On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600.

Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107.