In this paper we show some properties of the eccentric distance sum index which is defined as follows . This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_25, author = {Halina Bielak and Katarzyna Broniszewska}, title = {Eccentric distance sum index for some classes of connected graphs}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {71}, year = {2017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_25} }
Halina Bielak; Katarzyna Broniszewska. Eccentric distance sum index for some classes of connected graphs. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_2_25/
Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London, and Elsevier, New York, 1976.
Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401.
Hua, H., Zhang, S., Xu, K., Further results on the eccentric distance sum, Discrete App. Math. 160 (2012), 170-180.
Hua, H., Xu, K., Wen, S., A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011), 364-366.
Ilic, A., Yu, G., Feng, L., On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600.
Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.
Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107.