The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
Raymond Mortini
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017), / Harvested from The Polish Digital Mathematics Library

Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's  theorem the  Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise convergent unilateral trigonometric series.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:289827
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_73,
     author = {Raymond Mortini},
     title = {The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {71},
     year = {2017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_73}
}
Raymond Mortini. The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_73/

Cima, J., Ross, W., The Backward Shift on the Hardy Space, AMS, Providence, 2000.

Fatou, P., Series trigonometriques et series de Taylor, Acta Math. 30 (1906), 335-400.

Kechris, A. S., Set theory and uniqueness for trigonometric series, Preprint 1997. http://www.math.caltech.edu/ kechris/papers/uniqueness.pdf

Riesz, F., Riesz, M., Uber die Randwerte einer analytischen Funktion, Quatrieme Congres des Math. Scand. (1916), 27-44,

Lusin, N., Privaloff, J., Sur l’unicite et la multiplicite des fonctions analytiques, Ann. Sci. ENS 42 (1925), 143-191.

Rudin, W., Real and Complex Analysis, third edition, McGraw-Hill, New York, 1986.

Zygmund, A., Trigonometric Series, second edition, Vol. I+II Combined, Cambridge Math. Lib. 1959 and 1993.