Convolution conditions for bounded α-starlike functions of complex order
A. Y. Lashin
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017), / Harvested from The Polish Digital Mathematics Library

Let A be the class of analytic functions in the unit disc U of the complex plane with the normalization f(0)=f'(0)-1=0. We introduce a subclass SM*(α,b) of A, which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class SM*(n,α,b) (n0) related to SM*(α,b) is also considered under the same conditions. Among other things, we find convolution conditions for a function fA to belong to the class SM*(α,b). Several properties of the class SM*(n,α,b) are investigated.

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:289796
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_65,
     author = {A. Y. Lashin},
     title = {Convolution conditions for bounded $\alpha $-starlike functions of complex order},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {71},
     year = {2017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_65}
}
A. Y. Lashin. Convolution conditions for bounded $\alpha $-starlike functions of complex order. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_65/

Aouf, M. K., Darwish, H. E., Attiya, A. A., On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math. 32 (10) (2001), 1443-1452.

El-Ashwah, R. M., Some convolution and inclusion properties for subclasses of bounded univalent functions of complex order, Thai J. Math. 12 (2) (2014), 373-384.

Goodman, A. W., Univalent Functions, Vol. I, II, Tampa, Florida, 1983.

Kulshrestha, P. K., Bounded Robertson functions, Rend. Mat. 6 (1) (1976), 137-150.

Kulshrestha, P. K., Distortion of spiral-like mapping, Proc. Royal Irish Acad. 73A (1973) 1-5.

Libera, R. J., Univalent λ-spiral functions, Canad. J. Mat. 19 (1967) 449-456.

Nasr, M. A., Aouf, M. K., On convex functions of complex order, Mansoura Sci. Bull. 9 (1982), 565-582.

Nasr, M. A., Aouf, M. K., Bounded convex functions of complex order, Mansoura Sci. Bull. 10 (1983), 513-526.

Nasr, M. A., Aouf, M. K., Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92 (2) (1983) 97-102.

Nasr, M. A., Aouf, M. K., Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.

Padmanabhan, K. S., Ganesan, M. S., Convolution conditions for certain class of analytic functions, Indian J. Pure Appl. Math. 15 (1984), 777-780.

Robertson, M. S., On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408.

Salagean, G. S., Subclasses of univalent functions, in: Complex Analysis – Fifth Romanian-Finnish Seminar (C. A. Cazacu, N. Boboc, M. Jurchescu, I. Suciu, eds.) Springer, Berlin–Heidelberg, 1983, 362-372.

Silverman, H., Silvia, E. M., Telage, D., Convolution conditions for convexity and starlikeness and spiral-likeness, Math. Z. 162 (1978), 125-130.

Sizuk, P. I., Regular functions f(z) for which zf'(z) is λ-spirallike, Proc. Amer. Math. Soc. 49 (1975), 151-160.

Singh, R., Singh, V., On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5 (8) (1974), 733-754.

Wiatrowski, P., The coefficient of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II No. 39 Mat. (1971), 75-85.