We reduce the problem of describing all -natural operators transforming general affine connections on -manifolds into general affine ones to the known description of all -invariant maps for .
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_61, author = {Jan Kurek and W\l odzimierz M. Mikulski}, title = {The natural operators of general affine connections into general affine connections}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {71}, year = {2017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_61} }
Jan Kurek; Włodzimierz M. Mikulski. The natural operators of general affine connections into general affine connections. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_61/
Debecki, J., The natural operators transforming affinors to tensor fields of type (3, 3), Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 39 (2000), 37-49.
Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.
Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry,
Springer-Verlag, Berlin, 1993.