Let be the category of -dimensional manifolds and local diffeomorphisms and let be the tangent functor on . Let be the category of real vector spaces and linear maps and let be the category of -dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors admitting -natural operators transforming classical linear connections on -dimensional manifolds into almost complex structures on .
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_55, author = {Jan Kurek and W\l odzimierz M. Mikulski}, title = {On almost complex structures from classical linear connections}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {71}, year = {2017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_55} }
Jan Kurek; Włodzimierz M. Mikulski. On almost complex structures from classical linear connections. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_55/
Dombrowski, P., On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.
Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.
Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry,
Springer-Verlag, Berlin, 1993.
Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324.