On almost complex structures from classical linear connections
Jan Kurek ; Włodzimierz M. Mikulski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017), / Harvested from The Polish Digital Mathematics Library

Let fm be the category of m-dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on fm. Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱m be the category of m-dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F:𝒱m𝒱 admitting fm-natural operators J˜ transforming classical linear connections on m-dimensional manifolds M into almost complex structures J˜() on F(T)M=xMF(TxM).

Publié le : 2017-01-01
EUDML-ID : urn:eudml:doc:289797
@article{bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_55,
     author = {Jan Kurek and W\l odzimierz M. Mikulski},
     title = {On almost complex structures from classical linear connections},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {71},
     year = {2017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_55}
}
Jan Kurek; Włodzimierz M. Mikulski. On almost complex structures from classical linear connections. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 71 (2017) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2017_71_1_55/

Dombrowski, P., On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.

Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.

Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry,

Springer-Verlag, Berlin, 1993.

Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324.