In this note we shall prove that for a continuous function , where , the paratingent of at is a non-empty and compact set in if and only if satisfies Lipschitz condition in a neighbourhood of . Moreover, in this case the paratingent is a connected set.
@article{bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_91, author = {Wojciech Zygmunt}, title = {On compactness and connectedness of the paratingent}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {70}, year = {2016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_91} }
Wojciech Zygmunt. On compactness and connectedness of the paratingent. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 70 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_91/
Aubin, J. P., Frankowska, H., Set-Valued Analysis, Birkhauser, Boston, Massachusetts, 1990.
Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicite des solutions des systemes d’equations differentielles ordinaires et des equations au paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 2 (1948), 49-106.
Bouligand, G., Introduction a la geometrie infinitesimale directe, Vuibert, Paris, 1932.
Choquet, G., Outils topologiques et metriques de l’analyse mathematique, Centre de Documentation Univ., Course redige par C. Mayer, Paris, 1969.
Fedor, M., Szyszkowska, J., Darboux properties of the paratingent, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 67-74.
Mirica, S., The contingent and the paratingent as generalized derivatives for vectorvalued and set-valued mappings, Nonlinear Anal. 6 (1982), 1335-1368.