Connections from trivializations
Jan Kurek ; Włodzimierz Mikulski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 70 (2016), / Harvested from The Polish Digital Mathematics Library

Let P be a principal fiber bundle with the basis M and with the structural group G. A trivialization of P is a section of P. It is proved that there exists only one gauge natural operator transforming trivializations of P into principal connections in P. All gauge natural operators transforming trivializations of P and torsion free classical linear connections on M into classical linear connections on P are completely described.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:289844
@article{bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_83,
     author = {Jan Kurek and W\l odzimierz Mikulski},
     title = {Connections from trivializations},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {70},
     year = {2016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_83}
}
Jan Kurek; Włodzimierz Mikulski. Connections from trivializations. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 70 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_83/

Dębecki, J., Affine liftings of torsion-free connections to Weil bundles, Colloq. Math. 114 (1) (2009), 1-8.

Doupovec, M., Mikulski, W. M., Reduction theorems for principal and classical connections, Acta Math. Sinica (E-S) 26 (1) (2010), 169-184.

Janyska, J., Vondra, J., Natural principal connections on the principal gauge prolongation of the principal bundle, Rep. Math. Phys. 64 (3) (2009), 395-415.

Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, J. Wiley-Interscience, New York-London, 1963.

Kolar, I., Induced connections on total spaces of fiber bundles, Int. J. Geom. Methods Mod. Phys. 7 (4) (2010), 705-711.

Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.