The purpose of this paper is to analyze the degree of approximation of a function that is a conjugate of a function belonging to the Lipschitz class by Hausdorff means of a conjugate series of the Fourier series.
@article{bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_63, author = {Sergiusz K\k eska}, title = {The degree of approximation by Hausdorff means of a conjugate Fourier series}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {70}, year = {2016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_63} }
Sergiusz Kęska. The degree of approximation by Hausdorff means of a conjugate Fourier series. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 70 (2016) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2016_70_2_63/
Hardy, G. H., Divergent Series, Clarendon Press, Oxford, 1949.
Hausdorff, F., Summationsmethoden und Momentfolgen, Math. Z. 9 (1921), I: 74-109, II: 280–289.
Hildebrandt, T. H., Schoenberg, I. J., On linear functional operations and the moment problem for a finite interval in one or several dimensions, Ann. of Math. 34 (1933), 317-328.
Jakimovski, A., The sequence-to-function analogues to Hausdorff transformations, Bulletin of the Research Council of Israel vol. 8, 1959 (1960).
Kęska, S., A variant of the Hausdorff theorem for multi-index matrices II, Linear Algebra Appl. 327 (2001), 17-26.
Lal, S., Approximation of conjugates of almost Lipschitz functions by matrix Cesaro summability method, Arab. J. Math. Sci. 10 (2) (2004), 54.
Lal, S., Mishra, A., Euler-Hausdorff matrix summability operator and trigonometric approximation of the conjugate of a function belonging to the generalized Lipschitz class, J. Inequal. Appl. (2013), 2013:59.
Privalov, I. I., Sur les fonctions conjuguees, Bull. Soc. Math. France 44 (1916), 100-103.
Qureshi, K., On the degree of approximation of function belonging to the Lipschitz class by means of a conjugate series, Indian J. Pure Appl. Math. 12 (9) (1981), 1120-1123.
Rhoades, B. E., Ozkoklu, Kevser, Albayrak, Inci, On the degree of approximation of functions belonging to a Lipschitz class by Hausdorff means of its Fourier series, Appl. Math. Comput. 217 (2011), 6868-6871.
Toeplitz, O., Uber allgemeine lineare Mittelbildungen, Prace Matematyczno-Fizyczne 22 (1911), 111-119.