Vector space isomorphisms of non-unital reduced Banach *-algebras
Rachid ElHarti ; Mohamed Mabrouk
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 69 (2015), / Harvested from The Polish Digital Mathematics Library

Let A and B be two non-unital reduced Banach *-algebras and φ: A → B be a vector space isomorphism. The two following statement holds: If φ is a *-isomorphism, then φ is isometric (with respect to the C*-norms), bipositive and φ maps some approximate identity of A onto an approximate identity of B. Conversely, any two of the later three properties imply that φ is a *-isomorphism. Finally, we show that a unital and self-adjoint spectral isometry between semi-simple Hermitian Banach algebras is an *-isomorphism.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:289795
@article{bwmeta1.element.ojs-doi-10_17951_a_2015_69_2_61-68,
     author = {Rachid ElHarti and Mohamed Mabrouk},
     title = {Vector space isomorphisms of non-unital reduced Banach *-algebras},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {69},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_2_61-68}
}
Rachid ElHarti; Mohamed Mabrouk. Vector space isomorphisms of non-unital reduced Banach *-algebras. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 69 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_2_61-68/

Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. Lond. Math. Soc. 62 (2000), 917-924.

Bonsall, F. F., Stirling, D. S. G., Square roots in Banach *-algebras, Glasg. Math. J. 13 (1972), 74-74.

Dixon, P. G., Approximate identities in normed algebras, Proc. Lond. Math. Soc. 26 (3) (1973), 485-496.

Doran R. S., Belfi, V. A., Characterizations of C*-algebras. The Gelfand-Naimark Theorems, Marcel Dekker, New York, 1986.

Ford, J. W. M., A square root lemma for Banach (*)-algebras, J. Lond. Math. Soc. 42 (1) (1967), 521-522.

Kadisson, R. V., Isometries of operator algebras, Ann. of Math. 54 (2) (1951), 325-338.

Martin, M., Towards a non-selfadjoint version of Kadison’s theorem, Ann. Math. Inform. 32 (2005), 87-94.

Palmer, T. W., Banach Algebras and the General Theory of *-Algebras. *-Algebras, Vol. II, Cambridge University Press, Cambridge, 2001.

Sakai, S., C*-algebras and W*-algebras, Springer-Verlag, New York-Berlin, 1971.

Ylinen, K., Vector space isomorphisms of C*-algebras, Studia Math. 46 (1973), 31-34.