The Ramsey number for a pair of graphs and is defined as the smallest integer such that, for any graph on vertices, either contains or contains as a subgraph, where denotes the complement of . We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers and for some integers , , where is a linear forest of order with at least one edge.
@article{bwmeta1.element.ojs-doi-10_17951_a_2015_69_2_1-7, author = {Halina Bielak and Kinga D\k abrowska}, title = {The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {69}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_2_1-7} }
Halina Bielak; Kinga Dąbrowska. The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 69 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_2_1-7/
Burr, S. A., Ramsey numbers involving graphs with long suspended paths,
J. London Math. Soc. 24 (2) (1981), 405-413.
Burr, S. A., Erdos, P., Generalization of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983), 39-51.
Chen, Y., Cheng, T. C. E., Ng, C. T., Zhang, Y., A theorem on cycle-wheel Ramsey number, Discrete Math. 312 (2012), 1059-1061.
Chen, Y., Cheng, T. C. E., Miao, Z., Ng, C. T., The Ramsey numbers for cycles versus wheels of odd order, Appl. Math. Letters 22 (2009), 875-1876.
Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (2005), 85-87.
Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (1974), 269-277.
Faudree, R. J., Schelp, R. H., All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974), 313-329.
Karolyi, G., Rosta, V., Generalized and geometric Ramsey numbers for cycles, Theoretical Computer Science 263 (2001), 87-98.
Lin, Q., Li, Y., Dong, L., Ramsey goodness and generalized stars, Europ. J. Combin. 31 (2010), 1228-1234.
Radziszowski, S. P., Small Ramsey numbers, The Electronic Journal of Combinatorics (2014), DS1.14.
Radziszowski, S. P., Xia, J., Paths, cycles and wheels without antitriangles,
Australasian J. Combin. 9 (1994), 221-232.
Rosta, V.,On a Ramsey type problem of J. A. Bondy and P. Erdos, I, II, J. Combin. Theory Ser. B 15 (1973), 94-120.
Salman, A. N. M., Broersma, H. J., On Ramsey numbers for paths versus wheels, Discrete Math. 307 (2007), 975-982.
Shi, L., Ramsey numbers of long cycles versus books or wheels, European J. Combin. 31 (2010), 828-838.
Surahmat, Baskoro, E. T., Broersma, H. J., The Ramsey numbers of large cycles versus small wheels, Integers 4 (2004), A10.
Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus odd wheels, Graphs Combin. 24 (2008), 53-58.
Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus wheels, Discrete Math. 306 (24) (2006), 3334-3337.
Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20.
Zhang, L., Chen, Y., Cheng, T. C., The Ramsey numbers for cycles versus wheels of even order, European J. Combin. 31 (2010), 254-259.
Zhang, Y., Chen, Y., The Ramsey numbers of wheels versus odd cycles, Discrete Math. 323 (2014), 76-80.