The notion of normal pseudo-BCI-algebras is studied and some characterizations of it are given. Extensions of pseudo-BCI-algebras are also considered.
@article{bwmeta1.element.ojs-doi-10_17951_a_2015_69_1_59, author = {Grzegorz Dymek}, title = {On pseudo-BCI-algebras}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {69}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_1_59} }
Grzegorz Dymek. On pseudo-BCI-algebras. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 69 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_1_59/
Dudek, W. A., Jun, Y. B., Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187–190.
Dymek, G., Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73–90.
Dymek, G., p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461–474.
Dymek, G., On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167–187.
Dymek, G., Kozanecka-Dymek, A., Pseudo-BCI-logic, Bull. Sect. Logic Univ. Łódz 42 (2013), 33–42.
Halaˇs, R., K¨uhr, J., Deductive systems and annihilators of pseudo-BCK-algebras, Ital. J. Pure Appl. Math. 25 (2009).
Iorgulescu, A., Algebras of Logic as BCK Algebras, Editura ASE, Bucharest, 2008.
Is´eki, K., An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26–29.
Jun, Y. B., Kim, H. S., Neggers, J., On pseudo-BCI ideals of pseudo BCI-algebras, Mat. Vesnik 58 (2006), 39–46.