An A-manifold is a manifold whose Ricci tensor is cyclic-parallel, equivalently it satisfies ∇X Ric(X, X) = 0. This condition generalizes the Einstein condition. We construct new examples of A-manifolds on r-torus bundles over a base which is a product of almost Hodge A-manifolds.
@article{bwmeta1.element.ojs-doi-10_17951_a_2015_69_1_109, author = {Grzegorz Zborowski}, title = {A-manifolds on a principal torus bundle over an almost Hodge A-manifold base}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {69}, year = {2015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_1_109} }
Grzegorz Zborowski. A-manifolds on a principal torus bundle over an almost Hodge A-manifold base. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 69 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2015_69_1_109/
Besse, A., Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, 1987.
Gray, A., Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259–280.
Jelonek, W., On A-tensors in Riemannian geometry, preprint PAN 551, 1995.
Jelonek, W., K-contact A-manifolds, Colloq. Math. 75 (1) (1998), 97–103.
Jelonek, W., Almost Kahler A-structures on twistor bundles, Ann. Glob. Anal. Geom. 17 (1999), 329–339.
Kobayashi, S., Principal fibre bundles with the 1-dimensional toroidal group, Tohoku Math. J. 8 (1956), 29–45.
Moroianu, A., Semmelmann, U., Twistor forms on Kahler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003), 823–845.
O’Neill, B., The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
Pedersen, H., Todd, P., The Ledger curvature conditions and D’Atri geometry, Differential Geom. Appl. 11 (1999), 155–162.
Sekigawa, K., Vanhecke, L., Symplectic geodesic symmetries on K¨ahler manifolds, Quart. J. Math. Oxford Ser. (2) 37 (1986), 95–103.
Semmelmann, U., Conformal Killing forms on Riemannian manifolds, preprint, arXiv:math/0206117.
Tang, Z., Yan, W., Isoparametric foliation and a problem of Besse on generalizations of Einstein condition, preprint, arXiv:math/1307.3807.
Wang, M. Y., Ziller, W., Einstein metrics on torus bundles, J. Differential Geom. 31 (1990), 215–248.
Zborowski, G., Construction of an A-manifold on a principal torus bundle, Ann. Univ. Paedagog. Crac. Stud. Math. 12 (2013), 5–19.