The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds
Jan Kurek ; Włodzimierz Mikulski
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014), / Harvested from The Polish Digital Mathematics Library

If (M,g) is a Riemannian manifold, we have the well-known base preserving   vector bundle isomorphism TM=˜T*M given by vg(v,-) between the tangent TM and the cotangent T*M bundles of M. In the present note, we generalize this isomorphism to the one T(r)M=˜Tr*M between the r-th order vector tangent T(r)M=(Jr(M,R)0)* and the r-th order cotangent Tr*M=Jr(M,R)0 bundles of M. Next, we describe all base preserving  vector bundle maps CM(g):T(r)MTr*M depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:289739
@article{bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_59,
     author = {Jan Kurek and W\l odzimierz Mikulski},
     title = {The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {68},
     year = {2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_59}
}
Jan Kurek; Włodzimierz Mikulski. The natural transformations between r-tangent and r-cotangent bundles over Riemannian manifolds. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_59/

Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Diff. Geom. 10 (1975), 631–645.

Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley- Interscience, New York–London, 1963.

Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Defferential Geometry, Springer-Verlag, Berlin, 1993.

Kolář, I., Vosmanská, G., Natural transformations of higher order tangent bundles and jet spaces, Čas. pĕst. mat. 114 (1989), 181–186.

Kurek, J., Natural transformations of higher order cotangent bundle functors, Ann. Polon. Math. 58, no. 1 (1993), 29–35.

Mikulski, W. M., Some natural operators on vector fields, Rend Math. Appl (7) 12, no. 3 (1992), 783–803.

Nijenhuis, A., Natural bundles and their general properties Diff. Geom. in Honor of K. Yano, Kinokuniya, Tokyo (1972), 317–334.

Paluszny, M., Zajtz, A., Foundation of the Geometry of Natural Bundles, Lect. Notes Univ. Caracas, 1984.