Let and be two given graphs. The Ramsey number is the least integer such that for every graph on vertices, either contains a or contains a . Parsons gave a recursive formula to determine the values of , where is a path on vertices and is a star on vertices. In this note, we study the Ramsey numbers , where is a linear forest on vertices. We determine the exact values of for the cases and , and for the case that has no odd component. Moreover, we give a lower bound and an upper bound for the case and has at least one odd component.
@article{bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_11, author = {Binlong Li and Bo Ning}, title = {On path-quasar Ramsey numbers}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {68}, year = {2014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_11} }
Binlong Li; Bo Ning. On path-quasar Ramsey numbers. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_11/
Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (1) (2005), 85–87.
Dirac, G. A., Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952), 69–81.
Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (2) (1974), 269–277.
Graham, R. L., Rothschild, B. L., Spencer, J. H., Ramsey Theory, Second Edition, John Wiley & Sons Inc., New York, 1990.
Li, B., Ning, B., The Ramsey numbers of paths versus wheels: a complete solution, Electron. J. Combin. 21 (4) (2014), #P4.41.
Parsons, T. D., Path-star Ramsey numbers, J. Combin. Theory, Ser. B 17 (1) (1974), 51–58.
Rousseau, C. C., Sheehan, J., A class of Ramsey problems involving trees, J. London Math. Soc. 2 (3) (1978), 392–396.
Salman, A. N. M., Broersma, H. J., Path-fan Ramsey numbers, Discrete Applied Math. 154 (9) (2006), 1429–1436.
Salman, A. N. M., Broersma, H. J., Path-kipas Ramsey numbers, Discrete Applied Math. 155 (14) (2007), 1878–1884.
Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11–20.