On path-quasar Ramsey numbers
Binlong Li ; Bo Ning
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014), / Harvested from The Polish Digital Mathematics Library

Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or G¯ contains a G2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m), where Pn is a path on n vertices and K1,m is a star on m+1 vertices. In this note, we study the Ramsey numbers R(Pn,K1Fm), where Fm is a linear forest on m vertices. We determine the exact values of R(Pn,K1Fm) for the cases mn and m2n, and for the case that Fm has no odd component. Moreover, we give a lower bound and an upper bound for the case n+1m2n-1 and Fm has at least one odd component.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:289774
@article{bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_11,
     author = {Binlong Li and Bo Ning},
     title = {On path-quasar Ramsey numbers},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {68},
     year = {2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_11}
}
Binlong Li; Bo Ning. On path-quasar Ramsey numbers. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_11/

Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.

Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (1) (2005), 85–87.

Dirac, G. A., Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952), 69–81.

Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (2) (1974), 269–277.

Graham, R. L., Rothschild, B. L., Spencer, J. H., Ramsey Theory, Second Edition, John Wiley & Sons Inc., New York, 1990.

Li, B., Ning, B., The Ramsey numbers of paths versus wheels: a complete solution, Electron. J. Combin. 21 (4) (2014), #P4.41.

Parsons, T. D., Path-star Ramsey numbers, J. Combin. Theory, Ser. B 17 (1) (1974), 51–58.

Rousseau, C. C., Sheehan, J., A class of Ramsey problems involving trees, J. London Math. Soc. 2 (3) (1978), 392–396.

Salman, A. N. M., Broersma, H. J., Path-fan Ramsey numbers, Discrete Applied Math. 154 (9) (2006), 1429–1436.

Salman, A. N. M., Broersma, H. J., Path-kipas Ramsey numbers, Discrete Applied Math. 155 (14) (2007), 1878–1884.

Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11–20.