On the adjacent eccentric distance sum of graphs
Halina Bielak ; Katarzyna Wolska
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014), / Harvested from The Polish Digital Mathematics Library

In this paper we show bounds for the adjacent eccentric distance sum of graphs in terms of Wiener index, maximum degree and minimum degree. We extend some earlier results of Hua and Yu [Bounds for the Adjacent Eccentric Distance Sum, International Mathematical Forum, Vol. 7 (2002) no. 26, 1289–1294]. The adjacent eccentric distance sum index of the graph G is defined asξsv(G)=vV(G)ε(v)D(v)deg(v), where ε(v) is the eccentricity of the vertex v, deg(v) is the degree of the vertex v andD(v)=uV(G)d(u,v) is the sum of all distances from the vertex v.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:289824
@article{bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_1,
     author = {Halina Bielak and Katarzyna Wolska},
     title = {On the adjacent eccentric distance sum of graphs},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {68},
     year = {2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_1}
}
Halina Bielak; Katarzyna Wolska. On the adjacent eccentric distance sum of graphs. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_2_1/

Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, Macmillan London and Elsevier, New York, 1976.

Gupta, S., Singh, M., Madan, A. K., Application of graph theory: Relations of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002), 259–268.

Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386–401.

Hua, H., Yu, G., Bounds for the Adjacent Eccentric Distance Sum, Int. Math. Forum, 7, no. 26 (2002), 1289–1294.

Ilic, A., Eccentic connectivity index, Gutman, I., Furtula, B., (Eds.) Novel Molecular Structure Descriptors – Theory and Applications II, Math. Chem. Monogr., vol. 9, University of Kragujevac, 2010.

Ilic, A., Yu, G., Feng, L., On eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590–600.

Sardana, S., Madan, A. K., Predicting anti-HIV activity of TIBO derivatives: a computational approach using a novel topological descriptor, J. Mol. Model 8 (2000), 258–265.

Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99–107.