The Turán number of the graph 3P4
Halina Bielak ; Sebastian Kieliszek
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014), / Harvested from The Polish Digital Mathematics Library

Let ex(n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n,3P4).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:289747
@article{bwmeta1.element.ojs-doi-10_17951_a_2014_68_1_21,
     author = {Halina Bielak and Sebastian Kieliszek},
     title = {The Tur\'an number of the graph $3P\_4$
            },
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {68},
     year = {2014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_1_21}
}
Halina Bielak; Sebastian Kieliszek. The Turán number of the graph $3P_4$
            . Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_1_21/

Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853.

Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.

Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160.

Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667.

Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969.