Let be a smooth curve of genus . For each positive integer the birational -gonality of is the minimal integer such that there is with . Fix an integer . In this paper we prove the existence of an integer such that for every integer there is a smooth curve of genus with , i.e. in the sequence of all birational gonalities of at least one of the slope inequalities fails.
@article{bwmeta1.element.ojs-doi-10_17951_a_2014_68_1_11, author = {E. Ballico}, title = {On the birational gonalities of smooth curves}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {68}, year = {2014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_1_11} }
E. Ballico. On the birational gonalities of smooth curves. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 68 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2014_68_1_11/
Coppens, M., Martens, G., Linear series on 4-gonal curves, Math. Nachr. 213, no. 1 (2000), 35–55.
Eisenbud, D., Harris, J., On varieties of minimal degree (a centennial account), Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 3–13, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987.
Harris, J., Eisenbud, D., Curves in projective space, Séminaire de Mathématiques Supérieures, 85, Presses de l’Université de Montréal, Montréal, Que., 1982.
Hatshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
Laface, A., On linear systems of curves on rational scrolls, Geom. Dedicata 90, no. 1 (2002), 127–144; generalized version in arXiv:math/0205271v2.
Lange, H., Martens, G., On the gonality sequence of an algebraic curve, Manuscripta Math. 137 (2012), 457–473.