We describe all -natural operators transforming projectable-projectable classical torsion-free linear connections on fibred-fibred manifolds into classical linear connections on cotangent bundles of . We show that this problem can be reduced to finding -natural operators for , and , .
@article{bwmeta1.element.ojs-doi-10_17951_a_2013_67_1_1-10, author = {Anna Bednarska}, title = {On lifts of projectable-projectable classical linear connections to the cotangent bundle}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {67}, year = {2013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2013_67_1_1-10} }
Anna Bednarska. On lifts of projectable-projectable classical linear connections to the cotangent bundle. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 67 (2013) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2013_67_1_1-10/
Doupovec, M., Mikulski, W. M., On prolongation of higher order onnections, Ann. Polon. Math. 102, no. 3 (2011), 279–292.
Kolar, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67–76.
Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin–Heidelberg, 1993.
Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math. 101, no. 3 (2011), 237–250.
Kurek, J., Mikulski, W. M., The natural liftings of connections to tensor powers of the cotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.
Kures, M., Natural lifts of classical linear connections to the cotangent bundle, Suppl. Rend. Mat. Palermo II 43 (1996), 181–187.
Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (3–4) (2001), 441–458.
Yano, K., Ishihara, S., Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.