On a question of T. Sheil-Small regarding valency of harmonic maps
Daoud Bshouty ; Abdallah Lyzzaik
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012), / Harvested from The Polish Digital Mathematics Library

The aim of this work is to answer positively a more general question than the following which is due to T. Sheil-Small: Does the harmonic extension in the open unit disc of a mapping f from the unit circle into itself of the form f(eit)=eiφ(t), 0t2π where φ is a continuously non-decreasing function that satisfies φ(2π)-φ(0)=2Nπ, assume every value finitely many times in the disc?

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:289840
@article{bwmeta1.element.ojs-doi-10_17951_a_2012_66_2_25-29,
     author = {Daoud Bshouty and Abdallah Lyzzaik},
     title = {On a question of T. Sheil-Small regarding valency of harmonic maps},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {66},
     year = {2012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_2_25-29}
}
Daoud Bshouty; Abdallah Lyzzaik. On a question of T. Sheil-Small regarding valency of harmonic maps. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_2_25-29/

Ahlfors, L., Complex Analysis, Third Edition, McGraw-Hill, New York, 1979.

Bshouty, D., Hengartner, W., Lyzzaik, A. and Weitsman, A., Valency of harmonic mappings onto bounded convex domains, Comput. Methods Funct. Theory 1 (2001), 479-499.

Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.

Markushevich, A. I., Theory of functions of a complex variable. vol. III, English edition translated and edited by Richard A. Silverman, Prentice-Hall Inc., N. J., 1967.