A family of regular annuli is considered. Affine invariants of annuli are introduced.
@article{bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_7-12, author = {Waldemar Cie\'slak and Elzbieta Szczygielska}, title = {Affine invariants of annuli}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {66}, year = {2012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_7-12} }
Waldemar Cieślak; Elzbieta Szczygielska. Affine invariants of annuli. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_7-12/
Bonnesen, T., Fenchel, W., Theorie der konvexen Korper, Chelsea Publishing Co., New York, 1948.
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37-49.
Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.