Affine invariants of annuli
Waldemar Cieślak ; Elzbieta Szczygielska
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012), / Harvested from The Polish Digital Mathematics Library

A family of regular annuli is considered. Affine invariants of annuli are introduced.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:289773
@article{bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_7-12,
     author = {Waldemar Cie\'slak and Elzbieta Szczygielska},
     title = {Affine invariants of annuli},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {66},
     year = {2012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_7-12}
}
Waldemar Cieślak; Elzbieta Szczygielska. Affine invariants of annuli. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_7-12/

Bonnesen, T., Fenchel, W., Theorie der konvexen Korper, Chelsea Publishing Co., New York, 1948.

Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35.

Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve. II, Rend. Sem. Mat. Univ. Padova, 96 (1996), 37-49.

Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.