The purpose of this paper is to define transversal Cartan connectionof Finsler foliation and to prove its existence and uniqueness.
@article{bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_41-48, author = {Andrzej Miernowski}, title = {Cartan connection of transversally Finsler foliation}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {66}, year = {2012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_41-48} }
Andrzej Miernowski. Cartan connection of transversally Finsler foliation. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_41-48/
Alvarez Paiva, J. C., Duran, C. E., Isometric submersions of Finsler manifolds, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2409-2417 (electronic).
Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, vol. I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963.
Miernowski, A., A note on transversally Finsler foliation, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64.
Miernowski, A., Mozgawa, W., Lift of the Finsler foliation to its normal bundle, Differential Geom. Appl. 24 (2006), no. 2, 209-214.
Molino, P., Riemannian Foliations, Progress in Mathematics, 73, Birkhauser Boston, Inc., Boston, MA, 1988.
Spiro, A., Chern’s orthonormal frame bundle of a Finsler space, Houston J. Math. 25 (1999), no. 4, 641-659.