On certain general integral operators of analytic functions
B. A. Frasin
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012), / Harvested from The Polish Digital Mathematics Library

In this paper, we obtain new sufficient conditions for the operators Fα1,α2,...,αn,β(z) and Gα1,α2,...,αn,β(z) to be univalent in the open unit disc 𝒰, where the functions f1,f2,...,fn belong to the classes S*(a,b) and 𝒦(a,b). The order of convexity for the operators Fα1,α2,...,αn,β(z) and Gα1,α2,...,αn,β(z) is also determined. Furthermore, and for β=1, we obtain sufficient conditions for the operators Fn(z) and Gn(z) to be in the class 𝒦(a,b). Several corollaries and consequences of the main results are also considered.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:289831
@article{bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_13-23,
     author = {B. A. Frasin},
     title = {On certain general integral operators of analytic functions},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {66},
     year = {2012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_13-23}
}
B. A. Frasin. On certain general integral operators of analytic functions. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 66 (2012) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2012_66_1_13-23/

Ahlfors, L. V., Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23-29. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974.

Becker, J., Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23-43.

Becker, J., Lownersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321-335.

Breaz, D., Univalence properties for a general integral operator, Bull. Korean Math. Soc. 46 (2009), no. 3, 439-446.

Breaz, D., Breaz, N., Two integral operators, Studia Universitatis Babes-Bolyai Math., 47 (2002), no. 3, 13-19.

Breaz, D., Breaz, N., Univalence conditions for certain integral operators, Studia Universitatis Babes-Bolyai, Mathematica, 47 (2002), no. 2, 9-15.

Breaz, D., Owa, S., Some extensions of univalent conditions for certain integral operators, Math. Inequal. Appl., 10 (2007), no. 2, 321-325.

Bulut, S., Univalence preserving integral operators defined by generalized Al- Oboudi differential operators, An. S¸tiint¸. Univ. ”Ovidius” Constant¸a Ser. Mat. 17 (2009), no. 1, 37-50.

Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.

Frasin, B. A., General integral operator defined by Hadamard product, Mat. Vesnik 62 (2010), no. 2, 127-136.

Frasin. B. A., Aouf, M. K., Univalence conditions for a new general integral operator, Hacet. J. Math. Stat. 39 (2010), no. 4, 567-575.

Jabkubowski, Z. J., On the coefficients of starlike functions of some classes, Ann. Polon. Math. 26 (1972), 305-313.

Pascu, N., An improvement of Becker’s univalence criterion, Proceedings of the Commemorative Session: Simion Stoılow (Brasov, 1987), 43-48, Univ. Brasov, Brasov, 1987.

Pescar, V., A new generalization of Ahlfor’s and Becker’s criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53-54.

Seenivasagan, N., Sufficient conditions for univalence, Applied Math. E-Notes, 8 (2008), 30-35.

Seenivasagan, N., Breaz, D., Certain sufficient conditions for univalence, Gen. Math. 15 (2007), no. 4, 7-15.