On a theorem of Lindelof
Vladimir Ya. Gutlyanskii ; Olli Martio ; Vladimir Ryazanov
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011), / Harvested from The Polish Digital Mathematics Library

We give a quasiconformal version of the proof for the classical Lindelof theorem: Let f map the unit disk 𝔻 conformally onto the inner domain of a Jordan curve 𝒞: Then 𝒞 is smooth if and only if arg f'(z) has a continuous extension to 𝔻¯. Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:289742
@article{bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_45-51,
     author = {Vladimir Ya. Gutlyanskii and Olli Martio and Vladimir Ryazanov},
     title = {On a theorem of Lindelof},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {65},
     year = {2011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_45-51}
}
Vladimir Ya. Gutlyanskii; Olli Martio; Vladimir Ryazanov. On a theorem of Lindelof. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_45-51/

Ahlfors, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291-301.

Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand Co., Inc., Toronto, Ont., 1966; Reprinted by Wadsworth & Brooks, Monterey, CA, 1987.

Gutlyanskii, V. Ya., Ryazanov, V. I., On asymptotically conformal curves, Complex Variables Theory Appl. 25 (1994), 357-366.

Gutlyanskii, V. Ya., Ryazanov, V. I., On the theory of the local behavior of quasiconformal mappings, Izv. Math. 59 (1995), no. 3, 471-498.

Gutlyanskii, V. Ya., Martio, O., Ryazanov, V. I. and Vuorinen, M., Infinitesimal geometry of quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1,

101-130.

Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973.

Lindelof, E., Sur la representation conforme d’une aire simplement connexe sur l’aire d’un cercle, Quatrieme Congres des Mathematiciens Scandinaves, Stockholm, 1916, pp. 59-90.

Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg-New York, 1992.

Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.