We give a quasiconformal version of the proof for the classical Lindelof theorem: Let map the unit disk conformally onto the inner domain of a Jordan curve : Then is smooth if and only if arg has a continuous extension to . Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.
@article{bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_45-51, author = {Vladimir Ya. Gutlyanskii and Olli Martio and Vladimir Ryazanov}, title = {On a theorem of Lindelof}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {65}, year = {2011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_45-51} }
Vladimir Ya. Gutlyanskii; Olli Martio; Vladimir Ryazanov. On a theorem of Lindelof. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_45-51/
Ahlfors, L. V., Quasiconformal reflections, Acta Math. 109 (1963), 291-301.
Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand Co., Inc., Toronto, Ont., 1966; Reprinted by Wadsworth & Brooks, Monterey, CA, 1987.
Gutlyanskii, V. Ya., Ryazanov, V. I., On asymptotically conformal curves, Complex Variables Theory Appl. 25 (1994), 357-366.
Gutlyanskii, V. Ya., Ryazanov, V. I., On the theory of the local behavior of quasiconformal mappings, Izv. Math. 59 (1995), no. 3, 471-498.
Gutlyanskii, V. Ya., Martio, O., Ryazanov, V. I. and Vuorinen, M., Infinitesimal geometry of quasiregular mappings, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 1,
101-130.
Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
Lindelof, E., Sur la representation conforme d’une aire simplement connexe sur l’aire d’un cercle, Quatrieme Congres des Mathematiciens Scandinaves, Stockholm, 1916, pp. 59-90.
Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
Warschawski, S. E., On differentiability at the boundary in conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620.