The relation between the Jacobian and the orders of a linear invariant family of locally univalent harmonic mapping in the plane is studied. The new order (called the strong order) of a linear invariant family is defined and the relations between order and strong order are established.
@article{bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_191-202, author = {Magdalena Sobczak-Kne\'c and Viktor V. Starkov and Jan Szynal}, title = {Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {65}, year = {2011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_191-202} }
Magdalena Sobczak-Kneć; Viktor V. Starkov; Jan Szynal. Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_191-202/
Bshouty, D., Hengartner, W., Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 13-42.
Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
Godula, J., Liczberski, P. and Starkov, V. V., Order of linearly invariant mappings in Cn, Complex Variables Theory Appl. 42 (2000), 89-96.
Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen I, Math. Annalen 155 (1964), 108-154.
Schaubroeck, L. E., Subordination of planar harmonic functions, Complex Variables Theory Appl. 41, (2000), 163-178.
Sheil-Small, T., Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), 237-248.