Estimates for polynomials in the unit disk with varying constant terms
Stephan Ruscheweyh ; Magdalena Wołoszkiewicz
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011), / Harvested from The Polish Digital Mathematics Library

Let · be the uniform norm in the unit disk. We study the quantities Mn(α):=inf(zP(z)+α-α) where the infimum is taken over all polynomials P of degree n-1 with P(z)=1 and α>0. In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that infα>0Mn(α)=1/n. We find the exact values of Mn(α) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:289725
@article{bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_169-178,
     author = {Stephan Ruscheweyh and Magdalena Wo\l oszkiewicz},
     title = {Estimates for polynomials in the unit disk with varying constant terms},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {65},
     year = {2011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_169-178}
}
Stephan Ruscheweyh; Magdalena Wołoszkiewicz. Estimates for polynomials in the unit disk with varying constant terms. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_2_169-178/

Andrievskii, V., Ruscheweyh, S., Complex polynomials and maximal ranges: background and applications, Recent progress in inequalities (Nis, 1996), Math. Appl.,

430, Kluwer Acad. Publ., Dordrecht, 1998, 31-54.

Córdova, A., Ruscheweyh, S., On maximal polynomial ranges in circular domains, Complex Variables Theory Appl. 10 (1988), 295-309.

Córdova, A., Ruscheweyh, S., On maximal ranges of polynomial spaces in the unit disk, Constr. Approx. 5 (1989), 309-327.

Fournier, R., Letac, G. and Ruscheweyh, S., Estimates for the uniform norm of complex polynomials in the unit disk, Math. Nachr. 283 (2010), 193-199.

Ruscheweyh, S., Varga, R., On the minimum moduli of normalized polynomials with two prescribed values, Constr. Approx. 2 (1986), 349-368.