For a polynomial of degree n, we have obtained some results, which generalize and improve upon the earlier well known results (under certain conditions). A similar result is also obtained for analytic function.
@article{bwmeta1.element.ojs-doi-10_17951_a_2011_65_1_97-108, author = {Roshan Lal and Susheel Kumar and Sunil Hans}, title = {On the zeros of polynomials and analytic functions}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {65}, year = {2011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_1_97-108} }
Roshan Lal; Susheel Kumar; Sunil Hans. On the zeros of polynomials and analytic functions. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 65 (2011) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2011_65_1_97-108/
Gardner, R. B., Govil, N. K., Some generalizations of the Enestrom-Kakeya theorem, Acta Math. Hungar. 74 (1-2) (1997), 125-134.
Govil, N. K., Rahman, Q. I., On the Enestrom-Kakeya theorem, Tohoku Math. J. 20 (1968), 126-136.
Jain, V. K., On the zeros of a polynomial, Proc. Indian Acad. Sci. Math. Sci. 119 (1) (2009), 37-43.
Joyal, A., Labelle, G. and Rahman, Q. I., On the location of zeros of polynomials, Canadian Math. Bull. 10 (1967), 55-63.
Marden, M., The Geometry of Polynomials, Math. Surveys No. 3, Amer. Math. Soc., Providence, RI, 1966.
Pellet, M.A., Sur un mode de separation des racines des equations et la formule de Lagrange, Bull. Sci. Math. 5 (1881), 393-395.