We consider circular annuli with Poncelet’s porism property. We prove two identities which imply Chapple’s, Steiner’s and other formulas. All porisms can be expressed in the form in which elliptic functions are not used.
@article{bwmeta1.element.ojs-doi-10_17951_a_2010_54_2_21-28, author = {Waldemar Cie\'slak and El\.zbieta Szczygielska}, title = {On Poncelet's porism}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {54}, year = {2010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_2_21-28} }
Waldemar Cieślak; Elżbieta Szczygielska. On Poncelet’s porism. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_2_21-28/
Bos, H. J . M., Kers, C., Dort, F. and Raven, D. W., Poncelet’s closure theorem, Expo. Math. 5 (1987) 289-364.
Cieślak, W., Szczygielska, E., Circuminscribed polygons in a plane annulus, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 49-53.
Kerawala, S. M., Poncelet porism in two circles, Bull. Calcutta Math. Soc. 39 (1947), 85-105.
Weisstein, E. W., Poncelet’s Porism, From Math World - A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html