Let be an integral and non-degenerate -dimensional variety defined over . For any the real -rank is the minimal cardinality of such that . Here we extend to the real case an upper bound for the -rank due to Landsberg and Teitler.
@article{bwmeta1.element.ojs-doi-10_17951_a_2010_54_2_15-19, author = {Edoardo Ballico}, title = {On the real $X$-ranks of points of $\mathbb {P}^n(\mathbb {R})$ with respect to a real variety $X\subset \mathbb {P}^n$ }, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {54}, year = {2010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_2_15-19} }
Edoardo Ballico. On the real $X$-ranks of points of $\mathbb {P}^n(\mathbb {R})$ with respect to a real variety $X\subset \mathbb {P}^n$ . Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_2_15-19/
Albera, L., Chevalier, P., Comon, P. and Ferreol, A., On the virtual array concept for higher order array processing, IEEE Trans. Signal Process. 53(4) (2005), 1254-1271.
Arbarello, E., Cornalba, M., Griffiths, P. and Harris, J., Geometry of Algebraic Curves. I, Springer-Verlag, New York, 1985.
Ballico, E., Ranks of subvarieties of Pn over non-algebraically closed fields, Int. J. Pure Appl. Math. 61(1) (2010), 7-10.
Ballico, E., Subsets of the variety computing the -rank of a point of , preprint.
Bernardi, A., Gimigliano, A. and Ida, M., Computing symmetric rank for symmetric tensors, J. Symbolic Comput. 46 (2011), 34-55.
Bochnak, J., Coste, M. and Roy, F.-M., Real Algebraic Geometry, Translated from the 1987 French original. Revised by the authors. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 36, Springer-Verlag, Berlin, 1998.
Buczynski, J., Landsberg, J. M., Ranks of tensors and a generalization of secant varieties, arXiv:0909.4262v1 [math.AG].
Comas, G., Seiguer, M., On the rank of a binary form, arXiv:math.AG/0112311.
Comon, P., Golub, G., Lim, L.-H. and Mourrain, B., Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30(3) (2008), 1254-1279.
Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin, 1977.
Landsberg, J. M., Teitler, Z., On the ranks and border ranks of symmetric tensors, Found. Comput. Math. 10 (2010), 339-366.
Lang, S., Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.