Let be the family of all typically real functions, i.e. functions that are analytic in the unit disk , normalized by and such that Im Im for . Moreover, let us denote: and , where , and consists of all analytic functions, normalized and univalent in .We investigate classes in which the subordination is replaced with the majorization and the function is typically real but does not necessarily univalent, i.e. classes , where , , which we denote by . Furthermore, we broaden the class for the case in the following way:, .
@article{bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_75-80, author = {Leopold Koczan and Katarzyna Tr\k abka-Wi\k ec\l aw}, title = {Subclasses of typically real functions determined by some modular inequalities}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {54}, year = {2010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_75-80} }
Leopold Koczan; Katarzyna Trąbka-Więcław. Subclasses of typically real functions determined by some modular inequalities. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_75-80/
Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.
Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.
Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 95-101.
Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68.
Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112.
Rogosinski, W. W., Uber positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93–121 (German).