Subclasses of typically real functions determined by some modular inequalities
Leopold Koczan ; Katarzyna Trąbka-Więcław
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010), / Harvested from The Polish Digital Mathematics Library

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ:={z:|z|<1}, normalized by f(0)=f'(0)-1=0 and such that Im z Im f(z) 0 for zΔ. Moreover, let us denote: T(2):={fT:f(z)=-f(-z)forzΔ} and TM,g:={fT:fMginΔ}, where M>1, gTS and S consists of all analytic functions, normalized and univalent in Δ.We investigate  classes in which the subordination is replaced with the majorization and the function g is typically real but does not necessarily univalent, i.e. classes {fT:fMginΔ}, where M>1, gT, which we denote by TM,g. Furthermore, we broaden the class TM,g for the case M(0,1) in the following  way:TM,g=fT:|f(z)|M|g(z)|forzΔ, gT.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:289740
@article{bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_75-80,
     author = {Leopold Koczan and Katarzyna Tr\k abka-Wi\k ec\l aw},
     title = {Subclasses of typically real functions determined by some modular inequalities},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {54},
     year = {2010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_75-80}
}
Leopold Koczan; Katarzyna Trąbka-Więcław. Subclasses of typically real functions determined by some modular inequalities. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_75-80/

Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.

Goodman, A. W., Univalent Functions, Mariner Publ. Co., Tampa, 1983.

Koczan, L., On classes generated by bounded functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 95-101.

Koczan, L., Szapiel, W., Extremal problems in some classes of measures (IV). Typically real functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 43 (1989), 55-68.

Koczan, L., Zaprawa, P., On typically real functions with n-fold symmetry, Ann. Univ. Mariae Curie-Skłodowska Sect. A 52 (2) (1998), 103-112.

Rogosinski, W. W., Uber positive harmonische Entwicklugen und tipisch-reelle Potenzreichen, Math. Z. 35 (1932), 93–121 (German).