Let denote the class of analytic functions with the normalization in the open unit disc . Set and define in terms of the Hadamard product In this paper, we introduce several subclasses of analytic functions defined by means of the operator , given by Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.
@article{bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_17-26, author = {M. K. Aouf and A. Shamandy and A. O. Mostafa and S. M. Madian}, title = {Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator}, journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica}, volume = {54}, year = {2010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_17-26} }
M. K. Aouf; A. Shamandy; A. O. Mostafa; S. M. Madian. Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_17-26/
Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.
Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.
Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98.
Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.
Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.
Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.
Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth
Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.
Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.