Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator
M. K. Aouf ; A. Shamandy ; A. O. Mostafa ; S. M. Madian
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010), / Harvested from The Polish Digital Mathematics Library

Let A denote the class of analytic functions with the normalization f(0)=f'(0)-1=0 in the open unit disc U={z:z<1}.  Set fλn(z)=z+k=2[1+λ(k-1)]nzk(nN0;λ0;zU), and define fλ,μn in terms of the Hadamard product fλn(z)*fλ,μn=z(1-z)μ(μ>0;zU). In this paper, we introduce several subclasses of analytic functions defined by means of the operator Iλ,μn:AA, given by Iλ,μnf(z)=fλ,μn(z)*f(z)(fA;nN0;λ0;μ>0). Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:289833
@article{bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_17-26,
     author = {M. K. Aouf and A. Shamandy and A. O. Mostafa and S. M. Madian},
     title = {Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator},
     journal = {Annales Universitatis Mariae Curie-Sk\l odowska, sectio A -- Mathematica},
     volume = {54},
     year = {2010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_17-26}
}
M. K. Aouf; A. Shamandy; A. O. Mostafa; S. M. Madian. Inclusion properties of certain subclasses of analytic functions defined by generalized Salagean operator. Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica, Tome 54 (2010) . http://gdmltest.u-ga.fr/item/bwmeta1.element.ojs-doi-10_17951_a_2010_54_1_17-26/

Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.

Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.

Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.

Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot–Bouquet differential subordination, General inequalities, 3 (Oberwolfach, 1981), 339-348, Internat. Schriftenreihe Numer. Math., 64, Birkhauser, Basel, 1983.

Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-98.

Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758.

Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.

Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.

Owa, S., Srivastava, H. M., Some applications of the generalized Libera operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.

Salagean, G. S., Subclasses of univalent functions, Complex analysis - fifth

Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, 1992.